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Abstract 
The study has been intended to find best possible solution for developing continuous spatial 
distribution of groundwater quality, being used for drinking in the mega city of Lahore, 
Pakistan. A variety of interpolation methods have been compared to map spatial trends in 
different indicators of groundwater quality in the most realistic and effective way. For this 
purpose, concentration of nine groundwater parameters (Alkalinity, Ca, Cl, Conductivity, 
Hardness, Mg, pH, TDS and Turbidity) for 348 drinking water production wells have been 
used with their spatial reference. Ultimate accuracy check over different interpolation methods 
is applied using contour analysis, surface analysis, semivariogram, error plots, average 
standard error and root mean square error (RMSE). Kriging family, particularly simple 
kriging, is found to be most suitable for predicting most of the groundwater quality surfaces 
with the existing distribution of the production wells. The only exception found is for predicting 
Cl surface that has been best developed using redial basis function. RMSEs of the beast 
predicted surfaces for Alkalinity, Ca, Cl, Conductivity, Hardness, Mg, pH, TDS and Turbidity 
are 69.84, 19.04, 19.66, 212.10, 73.65, 10.21, 0.15, 131.70 and 0.86 respectively. 
Key Words: Ground Water Quality Index, Spatial Interpolation, Surface Analysis, Contour 
analysis, Semivariogram.   

 
Introduction 
Quality of the groundwater is an important parameter to be checked before its use for drinking, 
mining, irrigation and livestock production etc.  It requires a long term management plan that 
includes assessment of bio-chemical condition of the water that governs its reliability for the 
usage (Dixon and Chiswell, 1996; Shrestha and Kazama, 2007). According to Gabriel H. F. 
(2010) more than 50% of the world’s population depends upon ground water resources. 
Developing countries are suffering from health problems associated with either the lacking 
quantity or contamination of water. It is estimated that till 2025 the count of sufferers of water 
scarcity will reach to 3 billion, 83% of which will belongs to the developing world. The 
situation in Pakistan is not very much different from the global trend, Approximately 30% of 
all diseases and 40% of all deaths are directly or indirectly relates to the intake of contaminated 
water (water vision 2025 report, 2000; Haydar et al., 2009). The growing needs of portable 
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water have acknowledged conservation of water resources as a political issue as well for entire 
globe. 
The quality check of groundwater comprises on spatial analysis of many bio-physical and bio-
chemical parameters. To make things easier researchers has developed Geographic Information 
System (GIS) based Water Quality Index (WQI) that gives spatial distribution of an overall 
pollution level of the groundwater resource. WQI is a numeric expression that interpret mixing 
ratio of contamination to the ground water (Arias et al., 2012). Related parameters to this 
assessment method i.e. pH level, water table depth, temperature, electric conductivity etc. are 
inherently continuous and their absolute measurement is quite impossible. Therefore 
researchers, all over the world, take limited experimental observations from field and then use 
spatial interpolation that made data continuous in the study area before it get used as input to 
WQI. 
Spatial interpolation utilizes different algorithms for prediction at un-sampled location in the 
hope to acquire exactness for different scenarios (Mahmood et al., 2014). Most of the 
researchers used inverse distance weighted (IDW) technique for the analysis of spatial 
variability of pollutant concentration in groundwater (Chen and Liu, 2012; Tiengrod and 
Wongsere, 2013). With the advances in methodologies researchers have start using kriging as 
a better option for this assessment. Kriging not only relies on the basic law of geography but 
also provides unbiased predicted values with a control of variance. Spatial autocorrelation and 
prediction error plots are the most significant features in this regard. Kriging has various types 
as well, but which one to choose? is still an ignored question to be incorporated in WQI related 
studies.  
Ordinary kriging is the most usual type of kriging. It surmises that the trend is unknown and 
constant (Erdogan, 2009). The formula of ordinary kriging (Kumar et al., 2007) 

                                  
Where z(u)is estimated value at u point, n(u) is number of data points, 𝑧(𝑢ఈ) are the n measured 
values at place 𝑢ఈ close to u.m is mean of distribution, 𝜆ఈ(u) is weights. Simple kriging, on the 
other hand, presumes that trend is known and constant but with a random variable (Zhang and 
Srinivasan, 2009). 

 
Existence of a prominent trend in the data lead towards use of stochastic method of universal 
kriging to predict the variation efficiently (Johnston et al., 2001; Wang et al., 2014). 
With a variety of perdition algorithms, kriging made use of semivariograms and variograms to 
further aid the prediction process. Semivariogram and variogram are the diagrammatic display 
of autocorrelation and similarity as function of distance between data points (Milillo et al., 
2006). The evolution of semivariogram is not a big deal but the choice of suitable 
semivariogram for spatial data is time consuming (Teegavarapu et al., 2012). Experimental 
semivariogram describe the extent of measuring the average difference between known and 
unknown sample points. Value of the experimental semivariogram at distance 𝒉 is defined as 
half of the average squared difference between the value Z(𝒙) and the value Z(x + h) (Lark, 
2000; Robinson and Metternicht, 2006). 

                                   ℘(ℎ) =
ଵ

ଶே(௛)
∑[𝑧(𝑥) − 𝑧(𝑥 + ℎ)]ଶ 
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Where ℘(ℎ) is the semivariogram and 2℘(ℎ) is variogram that  has the information of spatial 
correlation (Gelfand et al., 2012). To point out the spatial variation, the geostatistical 
parameters are Nugget, Sill, Range and Lag (Su et al., 2009). 
Nugget is intersect of the semivariogram with the vertical axis. Ideally Nugget value should be 
zero, but in real case it exists due of sampling error (Ashiq et al., 2010). Smaller is the weight 
assign to the nearest point, larger is nugget values (Li and Heap, 2008). Sill is the value where 
semivariogram flatten out (Zawadzki et al., 2005). Range defines size of neighborhood window 
used for prediction such that the autocorrelation get established (Eastman, 2001; Li et al., 2006; 
Li and Heap, 2008).  If the correlation exist in data points over a long range, variogram will 
have least nugget effect and vice versa (Srivastava, 2013). The lag is the separation distance 
between points. Other parameters that control reliability of experimental variogram are sample 
size, lag interval, bin width, anisotropy, trend (Oliver and Webster, 2013). 
Larger sample size gives better accuracy of interpolation (Oliver and Webster, 2013). In 
general at least a set of 100 data points are required for semivariogram (pavao et al., 2012). For 
randomly spread data, the comparison must be grouped by distance as well as direction that 
requires adjustment of bin width and lag interval. Narrow bin width and short lag interval yields 
noisy data (Oliver and Webster, 2013). Anisotropy exists when spatial autocorrelation varies 
in each and every direction (Pokhrel et al., 2013). Trend can be identified by mapping data with 
a suitable graphic program or by fitting a simple trend surface such as linear or quadratic 
(Oliver and Webster, 2013). 
Another variable in kriging is variography that fits a model of spatial-dependence to data in 
order to reduce prediction error (Ibrahim, 2011). The available models include spherical, 
exponential, linear and gaussian which rely on auto correlation (Hoef et al., 2004; Bargaoui 
and Chebbi, 2009). 
Linear semivariogram model is the simplest in this family and it uses a trend of linear increase 
with distance (Mazzella and Mazzella, 2013).  

℘(ℎ) = 𝐴∗
ℎ

𝑟
               𝑓𝑜𝑟 ∈ (0, 𝑟) 

Spherical semivariogram model is used when there exists a clear range, sill and small value of 
nugget (Zhang and Srinivasan, 2009). It shows linear behavior close to the origin (Goovaert, 
2000; Zhang and Srinivasan, 2009).  
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When range approach progressively to clear nugget and sill then exponential semivariogram 
model is favored.  It also behaves linearly near the origin (Sunila and Kollo) 

                               ℘(ℎ) = 𝐶° + 𝐴∗ ൬1 − 𝑒
௛
௥ ൰             𝑓𝑜𝑟 ℎ > 0                             

Preference of gaussian semivariogram model is associated with small nugget having smooth 
variation (Zhang and Srinivasan, 2009). It shows parabolic behavior at the origin.  

℘(ℎ) = 𝐶° + 𝐴∗ ቆ1 − 𝑒
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This research has been intended to find best interpolation method for studying water quality 
parameters such as Alkalinity, Ca, Cl, Conductivity, Hardness, Mg, pH, TDS and Turbidity. It 
helps in computing water quality index with best predicted inputs to have the true inside of the 
local groundwater quality.  
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Materials and Methods 
Study Area 
Lahore is the provincial capital and second largest city of Pakistan lying between 31°15′-31°45′ 
N and 74°01′- 74°39′ E. with an area of  1014 km². Hydrogeologically it is a part of inter fluvial 
Bari Doab which is surrounded by River Ravi to North West (Basharat and Rizvi, 2011). All 
the domestic needs of water in Lahore are being fulfilled by abstracting groundwater through 
a great number of production wells. Rapid urbanization, improved living standards and 
industrialization has put an extra ordinary pressure on local aquifer from last couple of decades. 
This over usage along with decreasing recharge has results into detrition of both quality and 
quantity of the groundwater (Gabriel and Khan 2006). Water and Sanitation Agency (WASA), 
Lahore supervise the provision of water supply, sewerage, disposal and drainage collection in 
the study area.  

 
Figure 1: Study Area 

Data Collection: 
Sample water quality data of 348 production wells has been acquired from Water and Sanitation 
Agency (WASA), Lahore. The dataset consists of some physical i.e. Turbidity and Hardness and 
some chemical parameters i.e. Cl, Mg etc. of the year 2013. The location information is collected 
with an accuracy of ±3m using GPS model Garmin GPSmap 76CSx. All the quality as well as 
location data was then prepared as excel data sheets. Attribute data exported in GIS software 
for further processing and analysis. Statistical variations of datasets are given in table 1 
 

Table 1: Initial characteristics of Sample Data 

Parameters Alk.  Ca Cl Cond. Hardness Mg pH TDS Turb. 

Properties 

Sum 80444.4 12517.1 11758 221991 61424 7299.2 2848 140307.1 224.58 

Mean 224.7050 34.9640 32.8436 620.0866 171.5754 20.3888 7.9553 391.9193 0.6271 

Std. 83.1095 20.3575 26.2607 288.7539 82.4081 11.2687 0.1558 180.6994 0.8721 

Min 22.6 9.6 08 108 60 5.7 7.6 137.7 0 

Max 590 232 188 1745 784 102 8.3 1099.2 10.96 

Range 567.4 222.4 180 1637 724 96.3 0.7 961.5 10.96 

Exploratory data analysis has been performed to check data consistency, removing outliers and 
identifying statistical distribution. The histograms and normal Q-Q plots have been plotted to 
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check the normality of the observed data as shown in Figure 2.Histogram analysis helps to 
remove the outliers and made the data smooth by applying log transformation.  
Taking Ca as the explanatory example, its histogram analysis showed that its concentration 
data was positively skewed, but after applying transformation the skewness reduces down to -
3.56 and has achieved the Gaussian distribution. The related Q-Q Plots are shown in figure 2. 
 

 
 Figure 2: Transformation Applied 

 
Table 2 elaborates histogram properties for each of the parameters after improving their 
noramality using suitable transformations. 

 
Table 2: Histogram Analysis of water Quality Parameters 

Parameters Alk. Ca Cl Cond. Hardness Mg pH TDS Turbidity 
Properties 

Transformation Log Log Log Log Log Log Log Log None 

Mean 5.3462 3.4487 3.2778 6.3278 5.0515 2.904 2.0735 5.874 0.63658 

Median 5.3471 3.4657 3.1781 6.3725 5.0499 2.8792 2.0669 5.906 0.43 

Std. 0.37544 0.4556 0.6144 0.4559 0.4275 0.4664 0.0193 0.4388 0.87846 

Skewness -0.7494 0.3783 0.6521 -0.0956 0.2002 0.3606 0.4544 0.1426 5.3923 

Kurtosis 6.8408 4.0214 3.202 3.028 3.0948 3.3761 2.272 2.4138 57.563 

 
Accuracy Check Meters: 
Comparison of different outputs for their suitability can only be possible through some check 
meter that may be a visual analysis or some mathematical formulation. For this study following 
mathematical and visual check meters have been used to compare all possible interpolation 
results for each of the selected water quality parameters.  
Root Mean Square Error: 
Root mean square error (RMSE) is the under root of average square difference between 
measured and estimated value (Gundogdu and Guney, 2007). The mathematical expression of 
RMSE as described by Siska and Hung, 2001 is as under. 

RMSE =ට
(௓೔ି௓)మ

௡
= ට

ௌௌா೔

௡

ଶ
 

Where SSE is the sum of error (observed – predicted) and n is the number of pairs (Su et al., 
2009). 
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Standardized Root Mean Square Error: 
Smallest RMSE and standardized RMSE should be as closer to unit value as possible for the 
best interpolating member of the kriging family (Chang, 2010). The formula for standardized 
RMSE is (Adhikary et al., 2014). 

                                             Standardize RMSE = ඨ
∑ ൤

(௓೔ି௓)
ఙ೔

ൗ ൨
మ

೙
೔సభ

௡
 

Mean Absolute Error: 
The MAE results are often preferred over the RMSE as an evaluator because it is less sensitive 
to extreme values (Chung and Rogers, 2012). Mathematically mean absolute error can be 
written as (Goovaerts, 2010). 

                                             Mean absolute error = 
ଵ

௡
∑ [𝑍௜ − 𝑍]௡

௜ୀଵ   
Average Standard Error: 
Overestimation of variability in prediction occurs when average standard error is larger than 
root mean square prediction error and vice versa (Millillo et al., 2006). Mathematically it is 
given as (Goroi and Kumar, 2013) 

 

Where  is kriged variance at location Xi 
Mean Squared Error: 
It is average difference between measured and predicted values. 

 
Where n is variable (Lopez-Granados, 2005).  
Cross Validation: 
Cross validation is quick method for equating prediction and measured values (Omran, 2012). 
It uses all dataset to estimate the trend and autocorrelation models. While performing cross 
validation, mean error and RMSE should be calculated for each interpolation method. 
Error Plots: 
The bias between the predicted and measured value is used to evaluate mean error, root mean 
square error, mean standardize error, root mean square standardized error (Chung and Rogers, 
2012). 
Contours: 
Contours contribute to join adjacent points of equal data values. Quality, reliability and 
distribution of contours helpful to find the optimal method (Trochu, 1993). Number of 
neighbors controls texture of contours the (large no of neighbors produce smoot pattern of 
contours and vice versa) leading to the substantial variation in estimates (Varouchakis and 
Hristopulos, 2013).  
Correlation Coefficient: 
Correlation coefficient is the sum up the correlation between measured and estimated value 
(Sun et al., 2009). High correlation coefficient defines the superior model.  
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Where 𝑍௜
௣the estimated value is 𝑍௜

° is the observed value (Zang and Srinivasan, 2009).  

 
Selection of Interpolation Method: 
The present study is based on the comparison of different interpolation methods for generating 
accurate distribution surfaces to aid water quality indexing. Spatial interpolation techniques are 
mainly of two types deterministic and Stochastic Methods.  
Deterministic Methods 
Power factor that control influence of neighbors depending upon distance is the key element 
IDW. So forth the concentration values of Ca are estimated by using optimize power 1 
corresponding to the four sector with the directional angle 46o and 12 neighbors at the most. 
Global and Local interpolators interpolates at different order of polynomials. Both global and 
local polynomials have used the same order of 1 for interpolating alkalinity. For Calcium, 
completely regularized spline has been used corresponding to the anisotropic factor equals of 
2.35. Neighborhood are selected by using four sector with 45o ellipse in such a way that each 
sector includes at least 8 neighbors with the directional influence of 46o from north, which is 
demonstrated in figure 3.  
 

 
Figure 3: Directional Distribution of Ellipse for Ca 

 
Similarly all these methods are applied to other water quality parameters (Alkalinity, Cl, 
Conductivity, Hardness, Mg, pH, TDS and Turbidity). Table 2 illustrates the resultant statistics 
of the best deterministic method for each water quality parameter:  
 
Stochastic Methods:  
Normality of the data plays a key role in kriging analysis. Kriging operates different 
algorithmic models of semivariogram (Spherical, Exponential, Gaussian and Circular) 
correspond to transformation and trend. All the parameters including nugget, sill, partial sill, 
lag size and directional angle have been calculated for each of the quality parameter. The data 
in hand was almost homogeneously distributed along northeastern and southwestern directions. 
A clear indication of equal scale variability along the directional angle of 45o to up to 49o is 
showing presence of the recharge sources in northeastern and southwestern edges of the study 
area as shown in figure 4. 
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Figure 4: Anisotropic behavior in different types of Kriging Methods at different angles for Ca 

 
Anisotropic models fitted upon the surface to indicate the directionality influence as well as 
selection of neighborhood behavior. Similarly different semivariogram models have been fitted 
over the water quality parameters as per influencing statistical parameters. A common 
overriding trend of estimated values lying along the northwestern direction (River Ravi) and 
southwestern direction (Lahore Canal).  In the following table, all the parameters associated to 
the best fitted models of variography are mentioned for selected best kriging member for the 
ground water quality assessment.  
 

Table 3: Parameters of Probabilistic Interpolation Methods 
Properties Method Lag Size Partial Sill Nugget Minor 

Range(m) 
Major 

Range(m) 
Angle 

Direction 
(Degree) Parameters 

Alkalinity SK_S 0.003 0.03 0.06 0.01855 0.04 51 

Ca UK_C 0.0135 0.024 0.165 0.0383 0.124 52.9 

Cl OK_G 0.0031 0.3194 0.25 0.043 0.03999 155 

Conductivity OK_E 0.0027 0.1000 0.3999 0.0220 0.0973 55.4 

Hardness UK_S 0.0020 0.037 0.1389 0.03 0.0391 54.3 

Mg SK_G 0.0050 0.0999 0.1586 0.1 0.0223 348.5 

pH SK_S 0.0022 0.0001 0.0002 0.0105 0.0193 79 

TDS UK_E 0.0033 0.4 0.0622 1.1 0.2 320.1 

Turbidity SK_S 0.0046 0.1999 0.9008 0.0973 0.0560 11.9 

 
Results and Discussions: 
Spatial Analysis of ground water quality parameters generates distinguishable surfaces with 
certain prominent features. So, it’s inappropriate to suspect best interpolated surface for a 
certain water quality parameter just on the bases of surface analysis. The following table 4 
illustrates the statistical analysis of the estimated errors corresponding to the deterministic 
methods. Maximum proportion of parameters shows best results in completely regularized 
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spline with least RMSE value. Whereas in comparison of deterministic methods the only 
exception is found for turbidity, where the best interpolation method is found to be the IDW.   

 
Table 4:  Error Statistics of Deterministic Interpolation Methods 

 
As compare to deterministic interpolations, kriging family is more productive due to its ability 
to incorporate both statistical as well as mathematical concepts for estimating continuous 
surface for the water quality parameters. Best optimized interpolation method for each of the 
quality parameter along with the numerical check meter results are given in table 5. 
 

Table 5: Best suited interpolation methods with check meter results 
Water Quality 
Parameters 

Method RMSE Mean Std. Range ASE    MSE RMSS 

Alkalinity SK_S 69.84 -0.6299 69.8402 648.2687 64.23 -0.0079 1.073 

Ca UK_C 19.04 -0.2973 19.0438 228.5188 16.08 -0.0258 1.203 

Cl RBF 19.66  -0.0229 19.6598 166.2977     -        -       - 

Conductivity OK_E 212.1 -4.196 212.1030 1604.9210 193.8  -0.0318 1.124 

Hardness UK_S 73.65  0.1275 73.6694 782.2191 75.42 0.0003 0.9796 

Mg SK_G 10.21  0.01132 10.2070 94.8999 9.248 -0.003349 1.094 

pH SK_S 0.1474 -0.0019 0.1474 0.767104 0.1424 -0.0119 1.033 

TDS UK_E 131.7 -2.731 131.7110 1089.7020 185.6 -0.02618 0.718 

Turbidity SK_S 0.8258 -0.0073 0.8257 10.9597 0.8258 -0.0049 0.7812 

 
Error-Plots:  
A prediction error plot gives the relationship between measured (x-axis) and prediction (y-axis) 
values. Y-intercept explains overestimation and underestimated of data values. Comparative 
analysis of different methods based on error plots for Ca is given in Figure 5. Large difference 
between dotted and regression line deduce small slope. Local Polynomial has maximum value 
of Y-intercept that shows overestimation. Ordinary kriging with gaussian model and universal 

Water Quality 
Parameters 

Method RMS Mean Sum Std. Minimum Maximum Range 

Alkalinity RBF 71.12 -0.0187 -6.5132 71.1206 -394.1389 267.9173 662.0562 

Ca RBF 19.27 -0.1659 -57.7480 19.2684 -199.0822 31.0106 230.0927 

Cl RBF 19.66 -0.0229 -7.9763 19.6598 -116.8634 49.4343 166.2977 

Conductivity RBF 217.4 2.1758 757.1760 217.3635 -961.3808 565.8659 1527.2467 

Hardness RBF 74.22 0.7197 250.5144 74.2172 -601.2333 175.3401 776.5734 

Mg RBF 10.44 0.2551 88.7622 10.4348 -80.8697 18.2709 99.1405 

pH RBF 0.1481 -0.0007 -0.2540 0.1481 -0.4234 0.3468 0.7702 

TDS RBF 137 1.6330 568.2752 136.9940 -606.0618 355.1954 961.2572 

Turbidity IDW 0.8508 0.0036 1.2597 0.8508 -10.0289 1.9016 11.9304 
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kriging with exponential model have maximum values of slope. Whereas simple kriging and 
universal kriging both with spherical model result into high value of slope as well as y- 
intercept. From the figure 5 it clears that ordinary kriging with circular model, ordinary kriging 
with exponential model and IDW are showing overestimation as depicted by y-intercept and 
slop. Some interpolation methods such as universal kriging with Gaussian model and simple 
kriging with circular model both are showing relatively same behavior with a moderate slope. 
Simple kriging with Gaussian model and RBF have the same value of slope. Universal kriging 
with circular model gives the best estimation for the Ca with an intermediate value of y-
intercept. It can be concluded here that stochastic methods have better prediction results than 
deterministic methods. Error plots of best suited interpolation for each of the water quality 
parameter are shown in figure 6.      
 

 
Figure 5: Error Plots of Ca 
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Figure 6: Error Plots of Water Quality Parameters 

 
Semivariogram Analysis: 
Ideally trend line should passes diagonally from the points and no nugget value exists in 
semivariogram but it’s nonviable. Taking example of alkalinity, almost all the models, when 
fit to universal kriging have produced good results. But the best correlation of semivariogram 
values to distance has been explained by spherical model fitted to simple kriging. In case of 
Ca, small variation exists in data spread and value of nugget in ordinary and universal kriging 
models. Whereas simple kriging behaves differently in each semivariogram model 
corresponding to the nugget, sill and partial sill, as shown in the figure 7. Simple kriging with 
gaussian model illustrates the best fitted trend line. 
 

 
Figure 7: Comparison of the Semivariogram of Simple Kriging for Ca 
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For Conductivity, universal kriging with almost all the models, except gaussian, display 
smoothly increasing trend that tends auto correlation decrease and covariance increase slickly. 
However, exponential ordinary kriging, gaussian simple kriging, spherical universal kriging 
shows that a sharp trend exist in data point and an obvious range exists in concentration values 
of Conductivity. Semivariogram analysis for the Hardness dipicts that the all the models of 
ordinary kriging represents all most flat semivariogram with the least correlation factor. 
Whereas simple kriging and universal kriging signify correlation upto maximum extent 
particularly in spherical and exponential models. Best auto correlation has been observed in 
simple kriging prominently in with spherical model for the pH. The best results for TDS with 
the high correlation factor estimated by simple kriging with circular model and universal 
kriging with exponential model. Semivariogram analysis of Mg and Turbidity has shown that 
simple kriging explained well the trendy behavior of this variable. In case of Mg simple kriging 
gaussian model explains unique trend that asymptotically approaches the range and spherical 
simple kriging exhibits a sharp change of trend line. Resultant best semivariogram for each of 
the quality parameters is shown in figure 8. 
 

 
Figure 8:  Best Semivariogram of Quality Parameters 

 
Contour Analysis: 
Aquifer of Lahore consists of unconsolidated alluvial deposits of quaternary age surrounded 
by river Ravi to North West (Basharat and Rizvi, 2011). Groundwater quality of Lahore is 
mainly control by industrial effluents in river Ravi and central canal of the city. Contour maps 
assist to analyze the variation and trend of concentration values along the depression zone lies 
in the North western direction (Mahmood et al., 2013; Mahmood et al., 2016). GPI failed to 
define high or low values because of irregular contours. Whereas IDW and LPI underrated high 
scale variability not only along the depression zone but also throughout the study area for all 
the studied quality parameters. RBF has also elaborated the central depression zone with small 
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scale variability and sharp edges. In case of Cl contours appered edgy and located on the uper 
left of the study area. Stochastic methods have given visuals of not only the central hot spot 
but also the spatial trends in the entire region. Comparison of different stochastic methods for 
Ca has been given in the figure 9. Though universal kriging with circular model estimated with 
more precise RMSE, but contour generated by simple and ordinary kriging are smoother and 
regular. A small spot of Ca concentration has been found to be intruded from northeastern 
edges of the study area showing existence of Ca source their. 
 

 
Figure 9: Comparison of Stochastic Methods for Ca 

 
In Conductivity, the contours generated by the universal kriging were very much sharp and 
intermixed that provide crude information. Whereas the contours analysis of simple and 
ordinary kriging with exponential model demonstrate well the upper part with sharp variations. 
Due to shorter range of pH concentration values, contours are widely separated for it, giving 
almost no useful information. Hardness and TDS demonstrate the central depletion zone more 
precisely in the universal kriging with smooth variation and diverse sort of contours. Visuals 
of best suited contour generated for individual quality parameters are show in figure 10. 
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Figure 10: Contour Analysis of Different Water Quality Parameters 

 
Surface Analysis 
Surface analysis helps to reveal trends of low or high concentration of quality parameters across 
the study area. GPI and LPI have turnout to be week candidates to elaborate variation 
throughout the surface analysis of water quality parameters. Surfaces furnished by IDW and 
RBF for Ca have provided better results but best were generated by stochastic class, shown in 
figure 11. 
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Figure 11: Comparison of Stochastic Methods for Ca 

 
Best developed surfaces along with their suitable interpolation methods for each of the quality 
parameters are shown in figure 12. 
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Figure 12: Surface Analysis of the Different Water Quality Parameters 

 
Conclusion 
Proper selection of the interpolation method to generate input parametric layers is essential to 
compute meaningful water quality index. The criteria for the selection of a suitable 
interpolation method rely on characteristics of sample points, their mutual relationship, concept 
resemblance between spatial characteristics of measured water quality parameter and 
formulation of interpolation method. More precise prediction surface for Alkalinity distribution 
has been acquired using simple kriging with spherical model. For Ca the most precise RMSE 
of 19.04 has been achieved using universal kriging with circular model. Only Cl is found to be 
predicted best using deterministic method of RBF. Similarly best methods of interpolation as 
found for Conductivity, Hardness, pH, TDS and Turbidity are ordinary kriging with 
exponential model, universal kriging with spherical model, simple kriging with spherical 
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model, universal kriging with exponential model and simple kriging with spherical model with 
RMSEs as 1.124, 73.65, 0.147, 131.7 and 0.826 respectively. So, the present study conclude 
that simple kriging belonging, a stochastic method of interpolation is relatively more reliable 
for the ground water quality analyses of the study area. 
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